"Functional Starches and Flours in Savory Applications"

BICHENG WU:: SAVORY APPLICATIONS TEAM LEADER, GLOBAL APPLICATIONS

YENI PENA:: PROJECT LEADER, TECHNICAL SERVICE

- I. Native starch, chemistry and functionality
- 2. Functional starch & flour toolbox and troubleshooting
- 3. Enzyme effects
- 4. Functionality in dressings and sauces
 - viscosity, stability, texture, cost savings
- 5. Summary

STARCH AND FLOUR TECHNOLOGY

Yeni Peña

WIDE RANGE OF NATURALLY SOURCED STARCH BASES

Other starch sources include wheat and pulses

Copyright© 2019 Ingredion Incorporated. All rights reserved. Ingredion and the associated logo and Ingredion Idea Labs are trademarks of Ingredion Incorporated or an Affiliate. 4

Ingredion

SUMMARY OF STARCH CHEMISTRY

INHERENT PROPERTIES OF NATIVE STARCH

BRIGHTFIELD MICROSCOPY EVALUATIONS

All uncooked starches are semi-crystalline & insoluble in water

Various source options= Different polymers
=Different morphology = Different textures

Each source can have unique flavor profiles

Stained with 0.1N lodine

DIFFERENCES BETWEEN STARCHES & **FLOURS**

Starch variables can exist for a flour, the overall starch attributes for inherent properties are similar

Protein content is the defining factor in between a starch and a flour and can change properties significantly (except for Tapioca)

Flour types vary by protein content and it can contain other components such as fiber and micronutrients Most flours are native

Staining & fast green (a) wheat starch (b) wheat flour

STARCH THICKENING AND SWELLING

Starch granules swell (gelatinization) in the presence of heat and moisture

Shear and the presence of salts/lons affect starch swelling

As a result of starch granule swelling, irreversible changes occur, including:

- I. Melting of the crystalline structure
 - 2. Loss of birefringence
 - 3. Leaching of soluble granular starch fractions& Increasing swollen granule size

Example of a waxy maize starch granule swelling under partially polarized light as it is being heated in water to 98°C. The diameter of this starch granule goes from 25 microns (Figure 1) to about 55 microns (Figure 6) when swollen.

VISCOSITY CURVE - NATIVE (UNMODIFIED) STARCH

Gelatinization = Water Absorption = Viscosity Increase (1-4)

In native starches and flours retrogradation begins immediately after cooking (5)

Ingredion

"Bioactive carbohydrates in food". J.F.Kennedy and V.M.B. Cabalda. Chemistry in Britain, November, 1991. pp 1017-1020

NATIVE STARCH SWELLING

% AMYLOSE AND IMPACT ON TEXTURE

6% Starch cooked in water

Ingredion idea

WHERE CAN I USE NATIVE STARCHES AND FLOURS ?

Natives inherent properties:

- \rightarrow Narrow peak viscosity range
- \rightarrow Undesirable texture
- \rightarrow Poor quality final product
- \rightarrow Short shelf-life stability
- \rightarrow No freeze/thaw stability

OVERCOMING NATIVE STARCH INHERENT DEFICITS

Chemical and or physical modifications will improve:

- \rightarrow Process tolerance and retain viscosity
- \rightarrow Shelf life stability
- \rightarrow Freeze/thaw and refrigerated stability

Swollen starch granules are microscopically observed and the degree of starch cook can be determined

"COOK UPVS. INSTANT STARCHES"

"Cook up" or "granular" need cooking or heating to swell and provide viscosity

- Generally you need to reach at least 185°F and hold for 5-10 minutes
- Specific starch type and modifications can be further identified for varying process tolerances

Traditional modified starch Industry standard

Functional native starch Industry direction

"Cold Water Swelling (CWS)" or "Instant"

starches do not need heating or cooking

• Spray dry or drum drying allows for an instant starch with all the chemistries/modifications (cross-linking, stabilization, etc.) associated with cook-up starches

STARCH TECHNOLOGY TOOLBOX

SPRAY DRIED & AGGLOMERATED

SPRAY DRIED

Starch integrity	Fragmented (Fine→Coarse)	Intact & Swollen (Fine)	Intact, swollen & aggl. (Coarse, decreased dusting)
Dispersion	Low	Moderate	Superior
Hydration & Viscosity development	Particle size driven (Coarse = slow)	Moderate & Steady	Superior & Steady
Shear tolerance	Low	$Low \rightarrow high$	$Low \rightarrow high$
Order of addition	Must mix with other dries	Mix with other dries	Can be added directly to water
Vortex & Mixing	Yes	Yes	Yes
Texture	Grainy – pulpy	Smooth	Smooth

DRUM DRIED

How do I Choose

How do I know It's "working"

To build viscosity, evaluate the desired texture and degree of starch swelling Typical usage levels for a sauce or a dressing can range between 1-4%

What happens to starch under high process shear

Shear provides additional energy into the food system to:

- Swell granules further
- Provide viscosity

Further shear can damage granules causing:

- Viscosity loss
- Cohesiveness
- Poor stability

ENZYMES BREAK DOWN STARCHES AND FLOURS

- Enzyme presence = good/thick viscosity at production and eventually very thin in package or on shelf
- Enzymes are present in all living things [e.g. Spices, fruit, meats, nuts, eggs]
- Enzymes break down starch bonds [e.g. alpha- amylase rapidly breaks down starch, beta amylase, gluco-amylase & pullulanase]
- Rate of hydrolysis depends on amount present and time
- Enzymes can be deactivated with heat, adding vegetables and heating to at least 70°C, some suppliers provide enzyme deactivated spices etc..
- Starch is not resistant to enzymes

Before Enzyme

Ingredion

Quick enzyme test: Dose a starch solution with excess amounts of suspected ingredients and evaluate viscosity before and after. Complete confirmation with microscopy.

INGREDIENT EFFECTS ON STARCHES AND FLOURS

Ingredient	Formula Effect	Starch & Flour effect	Solution
Acid	Lower pH	Faster cooking Possible overcooking	Higher process tolerant starch or change the order of addition
High Oil & Fat	Oil coats starch	Delays gelatinization/swelling (may be beneficial for instant starches)	Hydrate starch/flour prior to oil/fat
High sugar	Hydration competition	Undercooking	Use Instant or lower process tolerant starch Hydrate starch/flour first Increase temperature
High Protein	Hydration competition and viscosity increase	Possible under cooking	Decrease starch usage levels, dry mix protein and starch, or hydrate starch/flour first

STARCH SELECTION FOR VISCOSITY & **STABILITY BICHENG WU**

FUNDAMENTAL VIEW OF DRESSINGS AND SAUCES

TYPES OF SALAD DRESSING

- General types
 - Pourable
 - Spoonable
 - Dry Mix
- Regular fat, reduced fat, or fat free
- Creamy or vinaigrette
- Cold preparation or cook-up
- With or without eggs
- Organic or "Natural"
- Standards of Identify (FDA Code of Federal Regulations (CFR))
 - Mayonnaise,
 - Spoonable salad dressing,
 - French dressing

TYPICAL DRESSING PROCESS

THE NEED FOR SHEAR TOLERANCE

Fragmented starch granules cause:

- •Viscosity Loss
- Long texture / cohesive
- Loss of emulsion stability
- •Decreased shelf life stability

Intact starch granules maintain:

- •Viscosity
- •Optimal texture
- •Emulsion stability
- •Shelf life stability

STARCH RECOMMENDATIONS & PROCESSING TIPS

- High process tolerance required due to high shear and low pH
- Typical usage levels depend on oil content
 - 3-6% (spoonable dressings)
 - 2-5% (pourable dressings)
- Do not overshear
 - For textural stability
- Cook optimally for hot process
 - Maximum viscosity
 - Less cohesiveness
 - More cling: need more cooking or more passes through the mill
- **Spray dried starch** with process tolerance for cold process
 - Agglomerated version for better dispersion

EMULSIFYING STARCHES

Hydrophilic

- Emulsifier functions:
- ✓ Surface active
- ✓ Disperse oil to small droplets
- ✓ Stabilize oil droplets

Low fat mayo without emulsifier

Hydrophobic

- ✓ Effective emulsifiers
- ✓ Not pH/salt sensitive
- ✓ Easy to use
- Heat stable
 - suitable for heat stable mayonnaise

EMULSIFYING STARCHES

Making a cost-effective, process robust and shelf-life stable Emulsion

1% Emulsifying starch can replace 5% liquid egg-yolk or 2% egg yolk powder

Special claims: egg-free, cholesterol free, vegan

- reduced safety-risks (salmonella, dioxine, etc.)
- premium quality without egg
- batch-to-batch consistency guaranteed

VISCOSIFIERS AND FREEZE THAW STABILITY IN SAUCES

- Functional starches and flours can provide different degrees of stability
- Various bases and process tolerance
- Freeze/Thaw stability is an indicator of refrigerator and subsequently room temp shelf stability
- In general "Waxy" bases provide more F/T stability etc..
- To improve overall freeze thaw stability starch and flour should be at above 1.5%

READY MEAL – FREEZE-THAW STABILITY

Ingredient	%
Whole Milk	91.28
Unsalted Butter	5.00
White Pepper	0.02
Salt	0.30
Starch/Flour*	3.00
Soy Lecithin	0.40
Total	100.00

- I. Functional native waxy corn I starch can surpass I-2 F/T cycles
- 2. Functional native waxy corn 2 starch can surpass 3-5 F/T cycles
- 3. Functional native tapioca flour can surpass 8 F/T cycles : no

syneresis at all and graininess developing at the end of the cycling

Ingredion

Co-Texturizers

Copyright© 2019 Ingredion Incorporated. All rights reserved. Ingredion and the associated logo and Ingredion Idea Labs are trademarks of Ingredion Incorpo

on Incorporated or an Affiliate.

TOMATO-BASED PRODUCTS EXAMPLES OF KEY PROPERTIES NEEDED

- Pizza sauce
 - Bake stability
 - Water retention properties
 - No boil-out
- Pasta sauce
 - Grainy texture
 - Even coating
 - Cling on pasta
- BBQ sauce
 - Enhanced cling
 - Suspension
 - Moisture management

STARCH FUNCTIONAL PROPERTIES

PULPING AGENTS

		SPRAY DRIED	SPRAY DRIED & AGGLOMERATED
Starch integrity	Fragmented (Fine→Coarse)	Intact & Swollen (Fine)	Intact, swollen & aggl. (Coarse, decreased dusting)
Dispersion	Low	Moderate	Superior
Hydration & Viscosity development	Particle size driven (Coarse = slow)	Moderate & Steady	Superior & Steady
Shear tolerance	Low	$Low \to high$	$Low \rightarrow high$
Order of addition	Must mix with other dries	Mix with other dries	Can be added directly to water
Vortex & Mixing	Yes	Yes	Yes
Texture	Grainy – pulpy	Smooth	Smooth

PULPING AGENT

TOMATO KETCHUP -- VISCOSIFIER & SOLIDS REPLACER

- **PULPY/GRAINY** (usage level 0.5-4%)
 - Improves appearance, texture, and mouthfeel
 - Fruit/ tomato solids replacement

Before heating

After Heating at 190F, 20 mins.

Starch-based pulping agent

Instant starch-based pulping agent

FUNCTIONAL PROPERTIES

Control and reduced tomato paste prototype have same functional properties in application

CO-TEXTURIZER FOR FAT MIMETIC

Concept of co-texturizer

 Starch based ingredients that do not add to the viscosity of the product, but instead provide fat mimetic characteristics that help enhance the creaminess of a product

OIL REDUCTION IN SPOONABLE DRESSING

	40% Oil	20% Oil
Ingredient	(%)	(%)
Sugar	9.80%	9.80%
Starch I for		
viscosity	2.70%	4.32%
Salt	1.20%	1.20%
Mustard Powder	0.04%	0.04%
Sodium Benzoate	0.03%	0.03%
Calcium Disodium EDTA	0.03%	0.03%
Potassium Sorbate	0.01%	0.01%
Starch 2 for		
mouthfeel	0.00%	0.33%
Water	30.94%	49.74%
Vinegar (50 Grain)	10.00%	10.00%
Paste Sum	54.75%	75.50%
Paste	54.75%	75.50%
Egg Yolk (10% salted)	5.25%	4.50%
Vegetable Oil	40.00%	20.00%
Total	100.00%	100.00%

40% Oil	20% Oil
Oil, water, vinegar,	Water, oil, vinegar,
sugar, egg yolks	sugar, modified
salted, modified	corn starch, egg
mustard powder,	mustard powder,
sodium benzoate,	sodium benzoate,
calcium disodium	calcium disodium
EDTA, potassium	EDTA, potassium
sorbate	sorbate

✓ Same list of ingredients

Approach:

a base **viscosifier** to build back some of the viscosity lost when the oil is reduced and then add a **co-texturizer** to enhance creaminess

ENHANCE MOUTHFEEL

OIL REDUCTION IN SPOONABLE DRESSING

OTHER APPLICATIONS WHERE STARCH IS IMPORTANT

Retort

- ✓ Typical Usage levels 2-5%
- ✓ Process tolerance
- \checkmark Suspension aid
- ✓ Fill viscosifier
- Little to no residual viscosity in final product
- ✓ Heat resistance

Dry mixes

- ✓ Typical Usage levels 1-3%
- ✓ Instant or cook up
- Highly process tolerant
- Various types of sources with varying modifications

Oil Plating

- ✓ Plate oil & liquids
- ✓ Liquids into powders
- ✓ 20-40% Loading
- ✓ Dry sauces
- ✓ Instant applications
- ✓ Better flowability
- ✓ Reduced hygroscopicity

Functional Starches and Flours for Dressings and Sauces

- I. Large variety of flour & starch ingredients for different functionality requirements
- Select a product that meets your process & shelf life stability, texture, functionality, cost and labeling needs
- 3. Optimal temperature, mixing and shear varies on starch type and other ingredients
- 4. Approach formulation challenges with structural-functional understanding,
 - formulation science and use resources from various sources such as ADS, and
 - supplier technical resources

THANKYOU

Yeni.Pena@ingredion.com Bicheng.Wu@ingredion.com

